Sitemap

A list of all the posts and pages found on the site. For you robots out there is an XML version available for digesting as well.

Pages

Posts

Future Blog Post

less than 1 minute read

Published:

This post will show up by default. To disable scheduling of future posts, edit config.yml and set future: false.

Blog Post number 4

less than 1 minute read

Published:

This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.

Blog Post number 3

less than 1 minute read

Published:

This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.

Blog Post number 2

less than 1 minute read

Published:

This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.

Blog Post number 1

less than 1 minute read

Published:

This is a sample blog post. Lorem ipsum I can’t remember the rest of lorem ipsum and don’t have an internet connection right now. Testing testing testing this blog post. Blog posts are cool.

portfolio

publications

Beyond Over-smoothing: Uncovering the Trainability Challenges in Deep Graph Neural Networks

Published in 33rd ACM International Conference on Information and Knowledge Management, 2024

Abstract: The drastic performance degradation of Graph Neural Networks (GNNs) as the depth of the graph propagation layers exceeds 8-10 is widely attributed to a phenomenon of Over-smoothing. Although recent research suggests that Over-smoothing may not be the dominant reason for such a performance degradation, they have not provided rigorous analysis from a theoretical view, which warrants further investigation. In this paper, we systematically analyze the real dominant problem in deep GNNs and identify the issues that these GNNs towards addressing Over-smoothing essentially work on via empirical experiments and theoretical gradient analysis. We theoretically prove that the difficult training problem of deep MLPs is actually the main challenge, and various existing methods that supposedly tackle Over-smoothing actually improve the trainability of MLPs, which is the main reason for their performance gains. Our further investigation into trainability issues reveals that properly constrained smaller upper bounds of gradient flow notably enhance the trainability of GNNs. Experimental results on diverse datasets demonstrate consistency between our theoretical findings and empirical evidence. Our analysis provides new insights in constructing deep graph models.

talks

teaching

Teaching experience 1

Undergraduate course, University 1, Department, 2014

This is a description of a teaching experience. You can use markdown like any other post.

Teaching experience 2

Workshop, University 1, Department, 2015

This is a description of a teaching experience. You can use markdown like any other post.